Estimation of the Asymptotic Variance of Kernel Density Estimators for Continuous Time Processes
نویسندگان
چکیده
منابع مشابه
Asymptotic Normality for Deconvolving Kernel Density Estimators
Suppose that we have 11 observations from the convolution model Y = X + £, where X and £ are the independent unobservable random variables, and £ is measurement error with a known distribution. We will discuss the asymptotic normality for deconvolving kernel density estimators of the unknown density f x 0 of X by assuming either the tail of the characteristic function of £ behaves as II I~Oexp(...
متن کاملMinimax Rates of Density Estimators for Continuous Time Processes
In this paper we investigate the problem of estimating density for continuous time processes when continuous sampling is available. Consider an R-valued stochastic process (Xt, t ∈ R) such that each Xt has the same distribution, say μ, with unknown density, say f . In the following we construct the kernel density estimator fT based upon the data (Xt, 0 ≤ t ≤ T ) and study its asymptotic behavio...
متن کاملAsymptotic Normality of Kernel Type Density Estimators for Random Fields
Kernel type density estimators are studied for random fields. It is proved that the estimators are asymptotically normal if the set of locations of observations become more and more dense in an increasing sequence of domains. It turns out that in our setting the covariance structure of the limiting normal distribution can be a combination of those of the continuous parameter and the discrete pa...
متن کاملAsymptotic normality for deconvolution kernel density estimators from random fields
The paper discusses the estimation of a continuous density function of the target random field Xi, i ∈ Z N which is contaminated by measurement errors. In particular, the observed random field Yi, i ∈ Z N is such that Yi = Xi + ǫi, where the random error ǫi is from a known distribution and independent of the target random field. Compared to the existing results, the paper is improved in two dir...
متن کاملAsymptotic properties of parallel Bayesian kernel density estimators
In this article we perform an asymptotic analysis of Bayesian parallel kernel density estimators introduced by Neiswanger, Wang and Xing [19]. We derive the asymptotic expansion of the mean integrated squared error for the full data posterior estimator and investigate the properties of asymptotically optimal bandwidth parameters. Our analysis demonstrates that partitioning data into subsets req...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2001
ISSN: 0047-259X
DOI: 10.1006/jmva.2000.1958